Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2312885

ABSTRACT

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , Cytokines
2.
Nat Genet ; 55(3): 471-483, 2023 03.
Article in English | MEDLINE | ID: covidwho-2286470

ABSTRACT

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Chromatin , COVID-19/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , SARS-CoV-2 , Transcription Factors/genetics
3.
Cell Rep ; 42(1): 111895, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2227691

ABSTRACT

T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.


Subject(s)
COVID-19 , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , CD4-Positive T-Lymphocytes , COVID-19/metabolism , T-Lymphocytes, Helper-Inducer , Plasma Cells/metabolism , Receptors, CXCR5 , Receptors, CXCR3/metabolism
4.
Sci Rep ; 12(1): 22175, 2022 12 22.
Article in English | MEDLINE | ID: covidwho-2186046

ABSTRACT

Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.


Subject(s)
COVID-19 , Malaria , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies, Viral , Cross Reactions , N-Acetylneuraminic Acid , Epitopes
5.
Nat Commun ; 13(1): 5926, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2096706

ABSTRACT

Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.


Subject(s)
Bacteremia , COVID-19 , Coinfection , Gastrointestinal Microbiome , Mice , Animals , Dysbiosis/microbiology , Anti-Bacterial Agents , SARS-CoV-2 , Bacteria
6.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1885669

ABSTRACT

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Subject(s)
COVID-19 , Influenza, Human , Neoplasms , Animals , Humans , Influenza, Human/pathology , Mice , Microglia/pathology , Myelin Sheath , Neoplasms/pathology , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1713295

ABSTRACT

An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2-associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as "covid toes" during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections.


Subject(s)
COVID-19/complications , Chilblains/immunology , Adult , COVID-19/epidemiology , Chilblains/epidemiology , Chilblains/virology , Connecticut/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
8.
Nat Biotechnol ; 40(5): 681-691, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713197

ABSTRACT

As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16hiCD66blo neutrophil and IFN-γ+ granzyme B+ Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.


Subject(s)
COVID-19 , Single-Cell Analysis , Chromatin , Humans , Single-Cell Analysis/methods , Transposases , Exome Sequencing
9.
PLoS One ; 17(1): e0262657, 2022.
Article in English | MEDLINE | ID: covidwho-1639087

ABSTRACT

BACKGROUND: Tests for SARS-CoV-2 immunity are needed to help assess responses to vaccination, which can be heterogeneous and may wane over time. The plaque reduction neutralization test (PRNT) is considered the gold standard for measuring serum neutralizing antibodies but requires high level biosafety, live viral cultures and days to complete. We hypothesized that competitive enzyme linked immunoassays (ELISAs) based on SARS-CoV-2 spike protein's receptor binding domain (RBD) attachment to its host receptor, the angiotensin converting enzyme 2 receptor (ACE2r), would correlate with PRNT, given the central role of RBD-ACE2r interactions in infection and published studies to date, and enable evaluation of vaccine responses. METHODS AND RESULTS: Configuration and development of a competitive ELISA with plate-bound RBD and soluble biotinylated ACE2r was accomplished using pairs of pre/post vaccine serum. When the competitive ELISA was used to evaluate N = 32 samples from COVID-19 patients previously tested by PRNT, excellent correlation in IC50 results were observed (rs = .83, p < 0.0001). When the competitive ELISA was used to evaluate N = 42 vaccinated individuals and an additional N = 13 unvaccinated recovered COVID-19 patients, significant differences in RBD-ACE2r inhibitory activity were associated with prior history of COVID-19 and type of vaccine received. In longitudinal analyses pre and up to 200 days post vaccine, surrogate neutralizing activity increased markedly after primary and booster vaccine doses, but fell substantially, up to <12% maximal levels within 6 months. CONCLUSIONS: A competitive ELISA based on inhibition of RBD-ACE2r attachment correlates well with PRNT, quantifies significantly higher activity among vaccine recipients with prior COVID (vs. those without), and highlights marked declines in surrogate neutralizing activity over a 6 month period post vaccination. The findings raise concern about the duration of vaccine responses and potential need for booster shots.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage
10.
Commun Biol ; 4(1): 1317, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528032

ABSTRACT

As Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.


Subject(s)
Epitope Mapping , SARS-CoV-2 , Antibodies, Viral , COVID-19 , Cross Reactions , Humans
12.
Sci Rep ; 11(1): 18285, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410888

ABSTRACT

Serological assays intended for diagnosis, sero-epidemiologic assessment, and measurement of protective antibody titers upon infection or vaccination are essential for managing the SARS-CoV-2 pandemic. Serological assays measuring the antibody responses against SARS-CoV-2 antigens are readily available. However, some lack appropriate characteristics to accurately measure SARS-CoV-2 antibodies titers and neutralization. We developed an Enzyme-linked Immunosorbent Assay (ELISA) methods for measuring IgG, IgA, and IgM responses to SARS-CoV-2, Spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins. Performance characteristics of sensitivity and specificity have been defined. ELISA results show positive correlation with microneutralization and Plaque Reduction Neutralization assays with infectious SARS-CoV-2. Our ELISA was used to screen healthcare workers in Louisville, KY during the first wave of the local pandemic in the months of May and July 2020. We found a seropositive rate of approximately 1.4% and 2.3%, respectively. Our analyses demonstrate a broad immune response among individuals and suggest some non-RBD specific S IgG and IgA antibodies neutralize SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Area Under Curve , COVID-19/blood , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Kentucky/epidemiology , Pandemics , Phosphoproteins/immunology , ROC Curve , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
13.
Res Sq ; 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1389924

ABSTRACT

The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal-transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection 7 months after primary infection. To elucidate the immunological mechanisms responsible for reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses that was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we identified the development of neutralizing antibodies and humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation.

14.
PLoS One ; 16(8): e0251114, 2021.
Article in English | MEDLINE | ID: covidwho-1378133

ABSTRACT

BACKGROUND: Countries across the globe have mobilized their armed forces in response to COVID-19, placing them at increased risk for viral exposure. Humoral responses to SARS-CoV-2 among military personnel serve as biomarkers of infection and provide a basis for disease surveillance and recognition of work-related risk factors. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to measure SARS-CoV-2 spike antigen-specific IgG in serum obtained from N = 988 US National Guard soldiers between April-June 2020. Occupational information, e.g. military operating specialty (MOS) codes, and demographic data were obtained via questionnaire. Plaque assays with live SARS-CoV-2 were used to assess serum neutralizing capacity for limited subjects (N = 12). RESULTS: The SARS-CoV-2 IgG seropositivity rate among the study population was 10.3% and significantly associated with occupation and demographics. Odds ratios were highest for those working in MOS 2T-Transportation (3.6; 95% CI 0.7-18) and 92F-Fuel specialist/ground and aircraft (6.8; 95% CI 1.5-30), as well as black race (2.2; 95% CI 1.2-4.1), household size ≥6 (2.5; 95% CI 1.3-4.6) and known COVID-19 exposure (2.0; 95% CI 1.2-3.3). Seropositivity tracked along major interstate highways and clustered near the international airport and the New York City border. SARS-CoV-2 spike IgG+ serum exhibited low to moderate SARS-CoV-2 neutralizing capacity with IC50s ranging from 1:15 to 1:280. In limited follow-up testing SARS-CoV-2 serum IgG levels remained elevated up to 7 months. CONCLUSIONS: The data highlight increased SARS-CoV-2 seroprevalence among National Guard vs. the local civilian population in association with transportation-related occupations and specific demographics.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , COVID-19/epidemiology , COVID-19/virology , Demography , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Military Personnel , Odds Ratio , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Young Adult
15.
Nature ; 588(7837): 315-320, 2020 12.
Article in English | MEDLINE | ID: covidwho-1337122

ABSTRACT

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Sex Characteristics , T-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Chemokines/blood , Chemokines/immunology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Lymphocyte Activation , Male , Monocytes/immunology , Phenotype , Prognosis , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , Viral Load
16.
Sci Signal ; 14(690)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299216

ABSTRACT

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA-to-kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.


Subject(s)
COVID-19/immunology , Kynurenic Acid/immunology , SARS-CoV-2 , Adult , Aged , COVID-19/blood , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/blood , Cytokines/immunology , Female , Humans , Kynurenic Acid/blood , Logistic Models , Male , Metabolic Networks and Pathways/immunology , Metabolomics , Middle Aged , Multivariate Analysis , Severity of Illness Index , Sex Factors , Signal Transduction/immunology , Tryptophan/metabolism
18.
Nature ; 595(7866): 283-288, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233713

ABSTRACT

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-6. Although pathological innate immune activation is well-documented in severe disease1, the effect of autoantibodies on disease progression is less well-defined. Here we use a high-throughput autoantibody discovery technique known as rapid extracellular antigen profiling7 to screen a cohort of 194 individuals infected with SARS-CoV-2, comprising 172 patients with COVID-19 and 22 healthcare workers with mild disease or asymptomatic infection, for autoantibodies against 2,770 extracellular and secreted proteins (members of the exoproteome). We found that patients with COVID-19 exhibit marked increases in autoantibody reactivities as compared to uninfected individuals, and show a high prevalence of autoantibodies against immunomodulatory proteins (including cytokines, chemokines, complement components and cell-surface proteins). We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signalling and by altering peripheral immune cell composition, and found that mouse surrogates of these autoantibodies increase disease severity in a mouse model of SARS-CoV-2 infection. Our analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics. Our findings suggest a pathological role for exoproteome-directed autoantibodies in COVID-19, with diverse effects on immune functionality and associations with clinical outcomes.


Subject(s)
Autoantibodies/analysis , Autoantibodies/immunology , COVID-19/immunology , COVID-19/metabolism , Proteome/immunology , Proteome/metabolism , Animals , Antigens, Surface/immunology , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Complement System Proteins/immunology , Cytokines/immunology , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Organ Specificity/immunology
19.
Nat Med ; 27(7): 1178-1186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1217708

ABSTRACT

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Carrier State/immunology , Female , Humans , Immunity, Humoral , Kinetics , Length of Stay/statistics & numerical data , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
20.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1213573

ABSTRACT

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL